Serveur d'exploration sur les effecteurs du phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The RXLR motif of oomycete effectors is not a sufficient element for binding to phosphatidylinositol monophosphates.

Identifieur interne : 000203 ( Main/Exploration ); précédent : 000202; suivant : 000204

The RXLR motif of oomycete effectors is not a sufficient element for binding to phosphatidylinositol monophosphates.

Auteurs : Takashi Yaeno [Japon] ; Ken Shirasu

Source :

RBID : pubmed:23425855

Descripteurs français

English descriptors

Abstract

The translocation of effector proteins into the host plant cells is essential for pathogens to suppress plant immune responses. The oomycete pathogen Phytophthora infestans secretes AVR3a, a crucial virulence effector protein with an N-terminal RXLR motif that is required for this translocation. It has been reported that the RXLR motif of P. sojae Avr1b, which is a close homolog of AVR3a, is required for binding to phosphatidylinositol monophosphates (PIPs). However, in our previous report, AVR3a as well as Avr1b bind to PIPs not via RXLR but via lysine residues forming a positively-charged area in the effector domain. In this report, we examined whether other RXLR effectors whose structures have been determined bind to PIPs. Both P. capsici AVR3a11 and Hyaloperonospora arabidopsidis ATR1 have an RXLR motif in their N-terminal regions but did not bind to any PIPs. These results suggest that the RXLR motif is not sufficient for PIP binding.

DOI: 10.4161/psb.23865
PubMed: 23425855
PubMed Central: PMC7030308


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The RXLR motif of oomycete effectors is not a sufficient element for binding to phosphatidylinositol monophosphates.</title>
<author>
<name sortKey="Yaeno, Takashi" sort="Yaeno, Takashi" uniqKey="Yaeno T" first="Takashi" last="Yaeno">Takashi Yaeno</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Science Center; RIKEN; Tsurumi, Yokohama, Kanagawa, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Plant Science Center; RIKEN; Tsurumi, Yokohama, Kanagawa</wicri:regionArea>
<wicri:noRegion>Kanagawa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shirasu, Ken" sort="Shirasu, Ken" uniqKey="Shirasu K" first="Ken" last="Shirasu">Ken Shirasu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23425855</idno>
<idno type="pmid">23425855</idno>
<idno type="doi">10.4161/psb.23865</idno>
<idno type="pmc">PMC7030308</idno>
<idno type="wicri:Area/Main/Corpus">000218</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000218</idno>
<idno type="wicri:Area/Main/Curation">000218</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000218</idno>
<idno type="wicri:Area/Main/Exploration">000218</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The RXLR motif of oomycete effectors is not a sufficient element for binding to phosphatidylinositol monophosphates.</title>
<author>
<name sortKey="Yaeno, Takashi" sort="Yaeno, Takashi" uniqKey="Yaeno T" first="Takashi" last="Yaeno">Takashi Yaeno</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Science Center; RIKEN; Tsurumi, Yokohama, Kanagawa, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Plant Science Center; RIKEN; Tsurumi, Yokohama, Kanagawa</wicri:regionArea>
<wicri:noRegion>Kanagawa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shirasu, Ken" sort="Shirasu, Ken" uniqKey="Shirasu K" first="Ken" last="Shirasu">Ken Shirasu</name>
</author>
</analytic>
<series>
<title level="j">Plant signaling & behavior</title>
<idno type="eISSN">1559-2324</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (microbiology)</term>
<term>Lysine (metabolism)</term>
<term>Magnoliopsida (microbiology)</term>
<term>Oomycetes (metabolism)</term>
<term>Oomycetes (pathogenicity)</term>
<term>Phosphatidylinositol Phosphates (metabolism)</term>
<term>Phytophthora infestans (metabolism)</term>
<term>Phytophthora infestans (pathogenicity)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Immunity (MeSH)</term>
<term>Solanum tuberosum (microbiology)</term>
<term>Virulence (MeSH)</term>
<term>Virulence Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (microbiologie)</term>
<term>Facteurs de virulence (métabolisme)</term>
<term>Immunité des plantes (MeSH)</term>
<term>Lysine (métabolisme)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Oomycetes (métabolisme)</term>
<term>Oomycetes (pathogénicité)</term>
<term>Phosphates phosphatidylinositol (métabolisme)</term>
<term>Phytophthora infestans (métabolisme)</term>
<term>Phytophthora infestans (pathogénicité)</term>
<term>Solanum tuberosum (microbiologie)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Virulence (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Lysine</term>
<term>Phosphatidylinositol Phosphates</term>
<term>Virulence Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Oomycetes</term>
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Maladies des plantes</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Magnoliopsida</term>
<term>Plant Diseases</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de virulence</term>
<term>Lysine</term>
<term>Oomycetes</term>
<term>Phosphates phosphatidylinositol</term>
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Oomycetes</term>
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Oomycetes</term>
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Plant Immunity</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Immunité des plantes</term>
<term>Motifs d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Virulence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The translocation of effector proteins into the host plant cells is essential for pathogens to suppress plant immune responses. The oomycete pathogen Phytophthora infestans secretes AVR3a, a crucial virulence effector protein with an N-terminal RXLR motif that is required for this translocation. It has been reported that the RXLR motif of P. sojae Avr1b, which is a close homolog of AVR3a, is required for binding to phosphatidylinositol monophosphates (PIPs). However, in our previous report, AVR3a as well as Avr1b bind to PIPs not via RXLR but via lysine residues forming a positively-charged area in the effector domain. In this report, we examined whether other RXLR effectors whose structures have been determined bind to PIPs. Both P. capsici AVR3a11 and Hyaloperonospora arabidopsidis ATR1 have an RXLR motif in their N-terminal regions but did not bind to any PIPs. These results suggest that the RXLR motif is not sufficient for PIP binding. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23425855</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1559-2324</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2013</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Plant signaling & behavior</Title>
<ISOAbbreviation>Plant Signal Behav</ISOAbbreviation>
</Journal>
<ArticleTitle>The RXLR motif of oomycete effectors is not a sufficient element for binding to phosphatidylinositol monophosphates.</ArticleTitle>
<Pagination>
<MedlinePgn>e23865</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4161/psb.23865</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">e23865</ELocationID>
<Abstract>
<AbstractText>The translocation of effector proteins into the host plant cells is essential for pathogens to suppress plant immune responses. The oomycete pathogen Phytophthora infestans secretes AVR3a, a crucial virulence effector protein with an N-terminal RXLR motif that is required for this translocation. It has been reported that the RXLR motif of P. sojae Avr1b, which is a close homolog of AVR3a, is required for binding to phosphatidylinositol monophosphates (PIPs). However, in our previous report, AVR3a as well as Avr1b bind to PIPs not via RXLR but via lysine residues forming a positively-charged area in the effector domain. In this report, we examined whether other RXLR effectors whose structures have been determined bind to PIPs. Both P. capsici AVR3a11 and Hyaloperonospora arabidopsidis ATR1 have an RXLR motif in their N-terminal regions but did not bind to any PIPs. These results suggest that the RXLR motif is not sufficient for PIP binding. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yaeno</LastName>
<ForeName>Takashi</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Plant Science Center; RIKEN; Tsurumi, Yokohama, Kanagawa, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shirasu</LastName>
<ForeName>Ken</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>02</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Signal Behav</MedlineTA>
<NlmUniqueID>101291431</NlmUniqueID>
<ISSNLinking>1559-2316</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C562170">AVR3a protein, Phytophthora infestans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018129">Phosphatidylinositol Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037521">Virulence Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K3Z4F929H6</RegistryNumber>
<NameOfSubstance UI="D008239">Lysine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="Y">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008239" MajorTopicYN="N">Lysine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019684" MajorTopicYN="N">Magnoliopsida</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009868" MajorTopicYN="N">Oomycetes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018129" MajorTopicYN="N">Phosphatidylinositol Phosphates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057865" MajorTopicYN="Y">Plant Immunity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037521" MajorTopicYN="N">Virulence Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">RXLR motif</Keyword>
<Keyword MajorTopicYN="N">effector</Keyword>
<Keyword MajorTopicYN="N">host cell entry</Keyword>
<Keyword MajorTopicYN="N">oomycete</Keyword>
<Keyword MajorTopicYN="N">phosphatidylinositol phosphate</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23425855</ArticleId>
<ArticleId IdType="pii">23865</ArticleId>
<ArticleId IdType="doi">10.4161/psb.23865</ArticleId>
<ArticleId IdType="pmc">PMC7030308</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Mar;26(3):330-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Oct;5(10):1272-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20855950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Feb 4;463(7281):627-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20130643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 10;306(5703):1934-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012 Jan;8(1):e1002400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22253591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 2;287(45):38101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22977236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 1;450(7166):115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Aug;11(4):373-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13323-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21788488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Jan 20;148(1-2):201-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22265412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 10;306(5703):1930-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Feb 4;463(7281):632-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20130644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14682-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21821794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1197-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Oct 14;286(41):35834-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21813644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jun;22(6):2017-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jul;20(7):1930-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):2096-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22308362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 18;459(7249):945-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19536257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2010 Jun;12(6):705-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20374248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jul 23;142(2):284-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20655469</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Shirasu, Ken" sort="Shirasu, Ken" uniqKey="Shirasu K" first="Ken" last="Shirasu">Ken Shirasu</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Yaeno, Takashi" sort="Yaeno, Takashi" uniqKey="Yaeno T" first="Takashi" last="Yaeno">Takashi Yaeno</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraEffectorV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000203 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000203 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraEffectorV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23425855
   |texte=   The RXLR motif of oomycete effectors is not a sufficient element for binding to phosphatidylinositol monophosphates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23425855" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraEffectorV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 17 23:19:50 2020. Site generation: Tue Nov 17 23:20:37 2020